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Abstract
COVID-19 pandemic has now become a challenging global public health 
concern, having higher risk of developing fatal respiratory disease due to severe 
inflammatory responses associated with the virus-mediated oxidative stress. 
The respiratory system is most preferred target organ for this novel virus as 
the lung is well oxygenated and having large surface area available to the virus 
for exposure and successively augmenting the health complications. Oxidative 
stress (OS) is an important factor causing metabolic and physiological alteration 
and various disease augmentations within the body. Respiratory viral infection 
has general consociation with cytokine production, inflammation, cell death and 
other pathophysiological processes which may be the result of perturbed redox 
balance. Apart from this, the presence of conditions likes aging, diabetes and 
hypertension and chronic obstructive pulmonary disease (COPD) are the risk factor 
for making severity of such infection outcome. It has been well established that 
an overproduction of reactive oxygen species (ROS) and antioxidant mechanisms 
deprivation are vital step for viral replica production and consequent release of 
pro-inflammatory cytokines are also an important factor of the innate immune 
responses to the pathogens that may results into acute lung damage. Additionally 
ROS can damage various vital biological molecules and inactivation of essential 
enzymes. Oxidative stress is an important factor causing metabolic and other 
pathophysiological alterations such as protein oxidations and various associated 
diseases.
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Introduction
Serious health issues and deaths associated from novel COVID-19 
pandemic is now global public health concern originated 
from China in 2019. Corona virus is single stranded RNA virus 
that affects the respiratory system in human. Such notorious 
viruses exploit the host defense mechanism in various ways for 
their replication and infections [1,2].  There is a key role of an 
imbalance of the redox cascade conditions during viral infections 
[3]. Lung inflammation is the main target organ as respiratory 
disorder at severe stage of such respiratory viral infections is, 
in general, associated with the impaired redox homeostasis or 
oxidative stress (OS). Inflammation is an important protective 
phenomenon responsible to cellular or tissue damage. The main 
function of this process is to destroy and remove the harmful 

agent and damaged tissues, therefore enhancing tissue repair. 
Whenever this vital and normally beneficial response takes place 
in an uncontrolled way, the result is extreme cellular or tissue 
damage that comes out in the form of chronic inflammation 
and destruction of normal tissue. Many pro-oxidants such as 
the superoxide anion one of the important reactive oxygen 
species (ROS), generated by phagocytes deployed to sites of 
inflammation, are proposed to be a major cause of the cell and 
tissue damage, comprising apoptosis, associated with many 
chronic inflammatory diseases [4,5]. Alveolar epithelial type II 
cells present in lung cells, in particular, are highly susceptible to 
the injurious effects of oxidants. The primary site of influenza 
virus infection in mammals includes pseudostratified, ciliated, 
columnar epithelium of the upper respiratory tract [6]. Influenza 
virus infection of the pulmonary mucosa could have important 
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influence on airway functions, and, this mechanism is still merely 
understood, the cytopathology of replicating influenza virus in 
the airway epithelium can disrupt normal cellular architecture 
and morphology.

Literature Review
Viral infection and perturbed redox state
Oxidative deterioration of biomolecules like lipids, proteins, 
and DNA [7] has been reported since long time. The reactive 
intermediates include the superoxide anion (O2

–), hydrogen 
peroxide (H2O2), and hydroxyl radicals (OH.) all are referred as 
reactive oxygen species (ROS) and very reactive in nature. Each ROS 
has been shown to have different inherent chemical properties, 
which guiding its reactivity and most favored biological targets. 
It has been observed for H2O2 that can regulate the signaling 
pathway by oxidizing thiols moiety within proteins [8]. There are 
many enzymes that can bring back this oxidation to return the 
protein to their natural reduced state. This is very similar to the 
process of phosphorylation and dephosphorylation-dependent 
signaling pathway very common in redox biology. The levels of 
H2O2 involved with signaling cascade may range from picomolar 
to nanomolar concentration and the higher concentration may 
cause proteins to be inactive by hyperoxidizing thiols moiety 
the concerned protein [9]. Redox signaling brings up the thiol 
oxidation–dependent signaling changes, whereas oxidative stress 
refers to damage of lipids, proteins, and DNA or disruption of 
thiol-dependent signaling and inactivation of essential enzymes.

There is undoubted report available showing that oxidative stress 
is almost inevitably associated with various toxicities, the first 
phenomenon in many diseases that may results into multi organ 
failure and death. The imbalance between reactive oxygen species 
(ROS) production and their effective removal by antioxidants 
and ROS scavengers has been in consideration since long to 
contribute many pathological conditions for critical illnesses 
such as acute respiratory distress syndrome (ARDS), pulmonary 
fibrosis, sepsis and many others. Thus, oxidative stress has drawn 
much arousing interest as therapeutic target in critical illness, and 
antioxidants have been tested in critically ill patients for decades. 
It is also important to mention that ROS serve as crucial signaling 
molecules for cell homeostasis and adaptation to the various 
cellular stress such hypoxia and many others, processes that may 
be related to perturbed mechanism of antioxidants system [10].

Furthermore, Oxidative stress has been found to be implicative 
in several diseases such as diabetes and cardiovascular disease. 
Recent evidence has shown that ROS can play an important 
role as secondary messengers in signal transduction pathways 
[11,12]. Cell has been equipped with a number of many enzymes 
like catalase, glutathione peroxidases, thioredoxin reductase, and 
superoxide dismutase available to overcome the oxidative stress 
conditions. These include. The cell also possesses a variety of 
lower molecular weight molecules such as tripeptide glutathione 
(GSH) that can counteract the harmful effects of   ROS. Glutathione 
is present at very low concentration (millimolar) in the cell 
[13], is an important in detoxification pathways via glutathione 

transferases enzyme systems [14], and is vital for sustaining the 
redox potential of the cell. It is now well understood that the redox 
potential of the cell can regulate the activation of many genes 
through triggering the transcription factors including nuclear 
factor (NF-κB) and activator protein (AP-1) that are important for 
immune function [15,16], antioxidant defense [17], and induction 
of apoptosis [18,19].

Interferons and chemokines generation in 
response to oxidative stress
More recently, it has been well established that the level of 
oxidative stress is also very vital factor for the immune responses 
to viruses. Both types of immunity (innate and acquired) are 
required to fight any viral infection, responsible for morbidity and 
mortality in critically ill patients suffering from diseases. It has 
been reported in one of the finding during in vitro and in vivo 
study that Dengue virus infections are the cause of generation of 
many inflammatory cytokines [20] and alteration in redox state 
increases the disease severity [21].

In response to oxidative stress, lung cells have been found to 
liberate many inflammatory mediators and cytokines/ chemokines 
such as tumour necrosis factor-a (TNF-a), interleukin (IL)-1 and 
IL-8. The release of chemokines induces neutrophil deployment 
and stimulating the activity of key transcription factors such as 
NF-kB and AP-1, thereby augmenting the inflammatory response 
and severe tissue injury [22,23]. As a result, the acute and 
chronic alveolar or bronchial inflammatory response is the basic 
mechanism involved in the pathogenesis of many lung diseases 
such as asthma, chronic obstructive pulmonary disease (COPD), 
acute respiratory distress syndrome (ARDS), idiopathic pulmonary 
fibrosis (IPF) and cystic fibrosis (CF). The target place and specific 
characteristics of the inflammatory responses may vary in each 
of those early mentioned diseases, but all are characterized by 
the recruitment to the lungs and activation of inflammatory cells 
resulting to an oxidant/antioxidant imbalance.

Glutathione (GSH) against inflammatory 
responses
In one of the study it has been observed that when whole blood 
culture of HIV positive individual infected with Mycobacterium 
tuberculosis, there was an increased release of inflammatory 
mediator cytokines such as IL-1, TNF-α, IL-6. However, there 
was interesting finding was reported in reduction of these 
proinflammatory cytokines (IL-1, TNF-α, and IL-6) when whole 
blood culture was supplemented with GSH precursor N-acetyl 
cysteine (NAC) [24]. High levels of such pro-inflammatory 
cytokines may have detrimental effect to the host because it may 
result to augmentation of fever, cachexia, hemorrhagic necrosis, 
and lethal shock [25-27]. Furthermore, the macrophage activity 
may be affected with the increased level of proinflammatory 
cytokine like IL-6 and may be deleterious to the host cell.

The mechanisms by which pro-inflammatory cytokines 
decrease intracellular GSH may be in response to increased 
levels of free radicals. It has been observed that increases in 
pro-inflammatory cytokines and an increase of free radicals 
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stress and a decreased level of  intracellular GSH occurs together 
in the host cells after infection such as HIV, hepatitis C [48], herpes 
simplex type 1 [49], Sendai (parainfluenza) virus [50], rhinovirus 
[51] and influenza virus [52].

A murine model of influenza-A virus infection has shown the 
loss of reduced GSH in vivo [53]. It has been observed that the 
virus alone has not been able to show cytopathic effect on the 
epithelial cells lining of the respiratory tract and complicated 
pneumonia resulted from infection has not been explained 
properly [54]. Therefore findings support the hypothesis that 
the tissue damage may be due to the host itself inflammatory 
response to the virus and not directly from the virus. It is 
further suggested that the effector mechanisms involved in the 
removal of pathogens through a complex mechanism where 
ROS generated by phagocytes participate in the disease [53,55]. 
ROS themselves also impart their role to the damaging effect 
in the lungs cells after viral infection by oxidation of lipids and 
damaging cell membranes, proteins and nucleic acid [56] or 
inactivating vital antioxidant enzymes [57]. Further it was also 
observed a decrease in total GSH, increased GSSG during this 
disturbed mechanism and apart from this an increased level of 
malondialdehyde, which is a biomarker of lipid peroxidation [58] 
in bronchoaleveolar lavage (BAL) fluid from mice infected with 
influenza virus.

Viral infection and cellular deprivation of GSH 
Intracellular GSH depletion has already been reported in various 
viral infections through multiple mechanisms. Cellular GSH loss 
has been reported with Sendai (parainfluenza virus), an RNA 
virus, where an early leakage of GSH is due to the perturbed cell 
membrane following the viral interaction [50]. The initial loss 
of GSH is reported due to the decreased function of enzymes 
responsible and contributing the maintenance of cellular ions 
(Na+/H+ ) exchange in the cell membrane. A decrease in the pH 
of the cell (acidification) is directly related with the increased 
number protons (H+) in the cell, this acidification is associated 
with the loss of the ion exchange pump. This acidic environment 
in the cell favor the viral infection and by accelerating the viral 
fusion process and therefore enhancing the replication and 
propagation [59-61].

Secondly deprivation of GSH after viral infection associated with 
viral replication and infected cells have been found to show 
a decrease in GSH content and an increase in mixed disulfide 
complex formation [50]. It supposed that the second expiration of 
GSH during viral replication is because of the rapid incorporation 
of cysteine amino acid into the viral gene RNA proteins [49,62,63]. 
There is clear evidence that an increased oxidative state favors the 
cellular environment for viral replication and it is also observed 
that the administration of the antioxidant dithiothreitol (DTT) 
to maintain high GSH levels in the cells resulted in a decrease in 
virus production. It was speculated that the higher GSH levels can 
inhibit the formation of mixed disulfides compound and results in 
the production of inactive virus by inhibiting the folding process 
of viral proteins [64]. There are well studied reports having 
evidence that decreasing GSH with a mixed disulfide-forming 
agent resulted in an increase in viral replication [50].

are proportionally correlated which is targeted by free GSH 
responsible for counteracting the adverse effects in host cells. 
In individuals positive for HIV, there is large number production 
of pro-inflammatory cytokines, which results into decrease in 
GSH because the antioxidant is being depleted as it is involved 
in scavenging free radicals. Furthermore, increased number of 
IL-1 may also participate in reducing the intracellular GSH as it is 
accepted that IL-1 fasten the process of depletion of intracellular 
cysteine thus decreasing GSH generation and decreasing levels 
of GSH [28].

Human subjects infected with the HIV have shown to have lower 
levels of GSH in their macrophages, NK and T cells compared 
to individuals [29-31]. It has been reported the contribution of 
GSH to be involved through different mechanism to enhance the 
functions of NK and T cells, acts as an antioxidant and reduces 
the levels of pro-inflammatory cytokines (IL-1, TNF-α, and IL-6) 
[25,32-34]. Therefore, GSH has been shown to play crucial role 
in directly controlling bacterial infection as well as improving 
host defenses making functional immune cells and rejuvenating 
macrophage function by reducing IL-6 [35]. The effects of GSH 
were reported to improve the control of intracellular bacterial 
infection when immune cells from retroviral subjects were 
treated with GSH-enhancing precursor like N-acetyl cystein.

Role of GSH in immune responses
In the redox state counter balance, GSH is found to be key 
intracellular antioxidant that exerts an efficient protection 
against ROS, through the thiol group of its cysteine where 
oxidation (GSSG) and reduction (GSH) takes place by the enzyme 
glutathione reductase. Moreover, it has also important role 
in cellular signaling processes and the mechanism comprising 
innate immune responses to viruses [36-38]. GSH is essential 
to combat pathogens growth and their attack to human body 
including T-lymphocyte proliferation [39,40], phagocytic activity 
of polymorphonuclear neutrophils (PMN) and dendritic cells. 
Most of the basic interactions between acquired and innate 
immune cells are in the form of peptide antigen presentation 
representing major histocompatability complex formation. 
Important role of GSH has been for the first step in antigen 
degradation and processing is the reduction of disulfide bond 
which requires [41,42]. GSH has been shown to alter cytokine 
expression specifically by enhancement through NAC [28,43,44] 
and γ-glutamyl cysteine synthase [45]. The specific role of GSH 
functions in adaptive immune cells is an important phenomenon 
to understand the correlation between the absence of 
intracellular glutathione and its reduced ability to remove the 
microbial infection by host cell.

GSH and its effectiveness for other viral 
infections
Viral pathophysiology mechanism is reported to be associated 
with disruption of the redox status of the cell in favor of oxidative 
stress which results into disturbed function of GSH [46]. Reduced 
form of the GSH is a major intracellular redox biological molecule 
that plays a vital role in protecting cells against damage from 
oxidants [47]. Viral infection studies had shown that oxidative 
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Viral infection and role of trace elements
Malnutrition has shown its impacts on increased susceptibility to 
various infectious diseases. The malnourished host believed to be 
susceptible for contagious disease that may results into impaired 
immune responses, which could influence the immune responses 
by inducing potential ability to counter the challenges of 
contagious disease [65]. The trace elements comprises of metals 
present in cells or in biological fluids at very low concentration 
join together with vitamins, form an enzymes and are essential 
for proper functioning of almost every physiological processes. 
They can combine moderately to certain extent to form stable 
complexes with enzymes, nucleic acids and other biological 
ligands. They can play as triggering factor or activators to control 
various biological functions. Several biological functions rely upon 
dietary micronutrients such as Copper, Zinc and Manganese in 
superoxide dismutase. Oxidative stress has been shown to be the 
first mechanism in infection if micronutrients are in deficiency 
[66]. Trace elements and some of their interactions with biological 
molecules have been shown to be antiviral in nature by combining 
with cellular proteins and causing them to be inactive. Some of 
the trace elements may enhance rigorousness of the other viral 
infections. Thus trace elements may have an important role in 
abnormal health conditions caused by viruses [65].

Many components of innate immunity could be influenced by 
trace elements/micronutrients such as Zinc, Selenium, Iron, 
Copper etc. Studies has shown that selected micronutrients may 
play an influential role in modification of oxidants mediated tissue 
injury and as a results phagocytic cells produce reactive oxygen 
species in response to defense against infectious diseases. With 
sufficient micronutrients the injury of the cells participating in 
innate immunity can be prevented. Natural killer cell functions 
are reduced if cell is deficient in Zinc, whereas supplement 
of zinc may enhance their activity. Many cell biochemistry, 
immunological and physiologically important activities of the 
body are dependent on trace elements required as micronutrients 
supplements. It is clearly demonstrated the role of trace 
elements for efficient function of immune systems include Zinc, 
Copper, Iron and Selenium. Some studied on animals and human 
have shown that addition of deficient nutrient to the food can 
reconstruct immune function and resistance to infection. Zinc 
and Selenium trace elements have been studies most in this 
line. Zinc is an important element present in almost every cell. 
It is associated with the activity of several enzymes [67], support 
healthy immune system. Sufficient zinc level is necessary for the 
division of T-cell their maturation and differentiation. The immune 

system is supposed to be badly affected if zinc deficiency occurs 
[68]. Zinc may induce the synthesis of metallothionein, sulfhydril 
rich protein that protect against free radicals [69]. Further, it has 
been suggested a very important role of zinc metalloprotein to 
inhibit the transmission of viral disease. Selenium and Copper 
concentration in erythrocytes can improve the trace element 
dependant oxidants status [70]. Selenocystein containing protein 
has been shown to contain selenium as a necessary component 
that is highly associated with the normal functioning of the cell 
and can regulate the immune system. Selenium is as integral part 
of many antioxidant enzymes which are involved into protection 
of cell against harmful effects of the free radicals. Selenium as 
a component of selenoprotein has been found to be necessary 
for proper functioning of macrophages, neutrophils, natural killer 
cells and T-lymphocytes, also shown to develop resistance against 
many of the infectious diseases through adjusting the interleukin 
production and therefore reduce pathological conditions such as 
oxidative stress and severe inflammation [71].

Discussion and Conclusion
There is a demand of understanding the redox-regulated 
intracellular pathways rendered active and manipulated by the 
virus. Therefore a new approach is required to inhibit the cell 
pathways that are responsible for viral replication and to combat 
the serious health issues. Furthermore antioxidants possibly 
interrupt the normal signaling processes that control the usual 
response to intense infection. The virus-induced oxidative stress 
through various mechanisms is attributed to the production of 
proinflammatory cytokines IL-1b and IL-18, which are crucial for 
host defense to pathogens. Widely used precursor of glutathione 
such as NAC has been found to reduce the over activation of 
signaling process implicated in acquired and innate immunity and 
in restoring the intracellular redox balance as well as effective 
in controlling viral replication and virus-induced inflammation. 
Various micronutrients/trace elements have immunomodulatory 
functions and thus influence the susceptibility of a host to 
different viral infections. Therefore, it is interesting to evaluate 
the potential benefit of supplementation of trace elements 
status as productive means of reducing the danger of contagious 
diseases. In summary, the biology of redox balance has 
undergone for much attention that may induce cellular damage 
to biologically important molecules regulating essential cellular 
signaling pathways. As a therapeutic intervention the potential of 
an antioxidant strategy and trace elements is very important to 
overcome the critical health complications.
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