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Golgi Disorganization and the ‘Glycosyl-
ation Signature’ of Cancer
Mammalian Golgi is the central station of glycosylation, composed 
of more than 250 glycosyltransferases that are highly organized 
according to the biosynthetic steps in which they participate 
[1]. Not surprisingly, perturbation in Golgi morphology leads 
to reordering of these enzymes, which in turn results in the 
formation of specific glycosyl epitopes. The well-recognized 
abnormal glycosylation in cancer occurs in the increase of 
sialylation, associated with a metastatic cell phenotype that has 
been detected both in clinical settings and experimental models 
[2]. It is a widely accepted view that overexpression of different 
sialylated antigens has not only a significant correlation with 
tumor progression, but that it also can protect cancer cells from 
apoptosis and has been suggested to confer resistance to therapy 

[3-6]. The major breakthrough in cancer glycobiology has come 
from pioneering experiments which have shown that inhibition 
of N- or O-glycan sialylation reduces the metastatic potential 
of colon cancer cells [7-9], the fragmented Golgi phenotype of 
which was later frequently reported on [10-13]. 

One of the most studied tumor-associated carbohydrate antigens 
is the Tn antigen, an initial O-glycan formed by linking GalNAc to 
the protein at Ser or Thr residue (Figure 1a). The Tn antigen can 
be further converted to the Core 1 structure (T antigen) by β1,3 
galactose extension, the reaction catalyzed by Core 1 synthase 
(C1GalT1). Importantly, the α6‐sialyltransferases (ST6GalNAc) 
compete with C1GalT1 for GalNAc substrate and represent 
an alternative short pathway which results in the formation 
of sialyl-Tn antigen (STn) (Figure 1a). Overexpression of Tn 
and STn antigens was described in breast, pancreas, stomach, 
lung, bladder, and uterus adenocarcinoma [14-17]. Due to its 
simple structure, Tn antigen was successfully targeted in clinics 

Onco-Golgi: Is Fragmentation a 
Gate to Cancer Progression?

Abstract
The Golgi apparatus-complex is a highly dynamic organelle which is considered 
the “heart” of intracellular transportation. Since its discovery by Camillo Golgi 
in 1873, who described it as the ‘‘black reaction,’’ and despite the enormous 
volume of publications about Golgi, this apparatus remains one of the most 
enigmatic of the cytoplasmic organelles. A typical mammalian Golgi consists of 
a parallel series of flattened, disk-shaped cisternae which align into stacks. The 
tremendous volume of Golgi-related incoming and outgoing traffic is mediated 
by different motor proteins, including members of the dynein, kinesin, and 
myosin families. Yet in spite of the strenuous work it performs, Golgi contrives to 
maintain its monolithic morphology and orchestration of matrix and residential 
proteins. However, in response to stress, alcohol, and treatment with many 
pharmacological drugs over time, Golgi undergoes a kind of disorganization which 
ranges from mild enlargement to critical scattering. While fragmentation of the 
Golgi was confirmed in cancer by electron microscopy almost fifty years ago, it is 
only in recent years that we have begun to understand the significance of Golgi 
fragmentation in the biology of tumors. Below author would like to focus on how 
Golgi fragmentation opens the doors for cascades of fatal pathways which may 
facilitate cancer progression and metastasis. Among the issues addressed will be 
the most important cancer-specific hallmarks of Golgi fragmentation, including 
aberrant glycosylation, abnormal expression of the Ras GTPases, dysregulation of 
kinases, and hyperactivity of myosin motor proteins.
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by the use of several therapeutic vaccines [18-20]. However, 
enthusiasm for this treatment diminished when prostate cancer 
treated with Tn-based vaccines did not bear the expected fruits 
and led to an equivocal conclusion [21]. This result also agreed 
with a publication which described only 20% of prostate tumors 
as Tn positive [22]. Further, an anti-cancer vaccine, Theratope, 
designed to address the STn epitope, failed on phase III of its 
clinical trial [23]. 

In the meantime, growing evidence in the literature has indicated 
that the increased expression of other tumor-associated 
carbohydrate antigens is achieved by the extension of Core 1 
structure [24,25]. We know that T antigen consists of unsialylated 
Core 1 structures, but Core 1 can be converted to sialyl‐T antigens 
by α3‐sialyltransferases (ST3Gal1) or by ST6GalNAc1. Notably, 
both T and sialyl‐T antigens are overexpressed in colon, breast and 
prostate cancer [26-29], but they are predominantly synthesized 
in the absence of the active Core 2 extension enzyme, C2GnT1 
[30-34]. In normal prostate and androgen-refractory prostate 
cancer cells, C2GnT1 was detected in the Golgi and its function 
seen to result in a synthesis of polylactosamine, which makes 
these cells susceptible to galectin-1-induced apoptosis [34,35]. 
In advanced androgen-refractory prostate cancer cells as well as 
in primary prostate tumors, Golgi was found to be fragmented. 
The level of Golgi disassembly was correlated with Gleason 
score and metastasis, but most importantly, C2GnT1, contrary 
to the ST3Gal1, was mislocalized to the endoplasmic reticulum 
(ER). Consequently, the expression level of polylactosamine was 
reduced, while sialyl‐T antigen was enhanced, allowing cells to 
evade galectin-1-induced apoptosis [34] (Figure 1b). 

Understanding the phenomenon of mislocalization of Golgi 
residential enzymes in the cells with fragmented Golgi phenotype 
was arrived at with published research that shed light on the 
features of the coiled-coil-rich proteins associated with the Golgi 
matrix, including golgins and Golgi ReAssembly Stacking Proteins 
(GRASPs). Central to their function are: a) the building blocks of 
the Golgi architecture; b) the template for Golgi reassembly; and 
c) the docking sites for the transport vesicles that carry various 
cargoes and residential proteins, including glycosidases and 
glycosyltransferases [36-40]. Intriguingly, knockdown of golgins 
by siRNAs results in a reorganization of Golgi in the majority of 
cases. However, most crucial Golgi disassembly was detected in 
cells lacking giantin [34,41,42]. 

Giantin is the highest molecular weight (376 kDa) Golgi matrix 
protein. It consists of a short C-terminal domain located in 
the Golgi lumen [43], where a disulfide bond connects two 
monomers to form an active homodimer, followed by a one-pass 
transmembrane domain and then a large (≥350 kDa) N-terminal 
region [44,45]. It has also been shown that fragmentation of 
Golgi in advanced prostate cancer is accompanied by impaired 
dimerization of giantin [34]. Given that giantin is essential for 
cross-bridging cisternae during Golgi biogenesis [34,44], it is 
becoming clear that giantin dedimerization may cause fragility of 
the Golgi structure. In addition to giantin, GM130 and GRASP65 

are also regulating initial steps of O-glycosylation. In the cells with 
normal, compact Golgi, C2GnT1 is docked to this organelle by a 
giantin-dependent mechanism, whereas C1GalT1 and ST3Gal1 
use both giantin and GM130-GRASP65 [40]. It is worth noting 
that GM130 is able to make a complex with giantin in the absence 
of GRASP65 [40,46]. This alternative docking mechanism allows 
C1GalT1 and ST3Gal1 (but not C2GnT-L) to be delivered to the 
Golgi, even though giantin is missed or presented as a monomer 
and Golgi is fragmented (Figure 1b). Finally, the shift from the 
Core 2 pathway to ST3Gal1-mediated glycosylation provides an 
excessive expression of sialyl-T antigen [34]. 

What remain unclear are the details of the mechanism whereby 
the Golgi in some cancer cells prefers to form Tn and STn instead of 
T and sialyl‐T antigens or Core 2 elongation. Different possibilities 
can be envisaged here. The first and simplest explanation of 
overexpressed Tn and STn antigens is the decreased activity of 
C1GalT1, which was described in some colon cancer lines [47]. 
This phenomenon was further uncovered by the Cummings’ lab, 
which showed that loss of function mutations in Cosmc, a unique 
chaperon for C1GalT1, causes a reduction of Core 1 extension 
pathway in different cancer cells, including colon, melanoma-
derived, and cervical cancers [48]. However, this mechanism 
cannot be ascribed to many other cancers, where C1GalT1 is 
stably expressed and localized in the fragmented Golgi [34]. This 
would not have been possible in cells with mutant Cosmc because 
dysfunction of Cosmc results in retention of C1GalT1 in the ER 
[49]. The key question, then, is the mechanism that underlies the 
overexpression of Tn and STn despite of presence of C1GalT1. 

O-glycosylation is initiated by GalNAc-transferases, GalNAc-Ts, 
which are present throughout the Golgi stacks and preceded 
function of C1GalT1 (Figure 1a). Because relocation of GalNAc-
Ts from Golgi to the ER has been observed in colon cancer [10] 
and in response to growth factor stimulation [50], it seems 
reasonable to assume that colon cancer-specific disassembly 
of Golgi is accompanied by a mistargeting of GalNAc-Ts, thus 
partially interrupting the initial step of O-glycosylation and 
reducing the sensitivity of cancer cells to TRAIL-induced apoptosis 
[51]. On the other hand, Golgi fragmentation may result in sub-
Golgi redistribution of ST6GalNAc1 as it is described in breast 
cancer cells [52]. This rearrangement allows ST6GalNAc1 to 
successfully compete with C1GalT1 for Core 1 substrate. Similarly, 
the overexpression of Core 3 synthase, an enzyme that in normal 
mucins compete with C1GalT1 for GalNAc substrate, can be a 
reason for down-regulation of latter during malignancy [53,54] 
(Figure 1b). The Golgi mistargeting of glycosyltransferases may 
also be caused by the loss of their Golgi retention partner; 
however, despite the significant progress in our understanding 
of the Golgi retention mechanism of glycosyltransferases [55,56], 
this possibility needs further investigation. 

RAS Superfamily GTPases Promote 
Golgi Fragmentation and Coordinate the 
Function of Anti-apoptotic Kinases
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In the past decade, substantial progress has been made in 
understanding the role of Rab proteins in cancer. Overexpression 
or activation at least dozen of Rabs has been described in 
different type of cancer [57]. Among them, Rab1a [58], Rab3d 
[59], Rab6a [34,60,61], Rab8 [62] and Rab12 [63] are localized to 
different compartments of the Golgi. They tightly associate with 
golgins and coordinate protein transport and maintenance of a 
Golgi organization [64,65]. It should be noted that Rab proteins, 

contrary to Ras, provide cancer pathways without mutation. 
Furthermore, while Rac proteins are mostly monomeric [66], 
Rabs may form a dimer, which property increases affinity of 
their dimer-effectors for the Golgi membrane [67]. One powerful 
example is a dimeric form of Rab6a, which interacts with giantin 
during formation of compact Golgi. In advanced prostate 
cancer, however, it cooperates with Myosin IIA, providing 
Golgi disassembly [34] (Figure 2a). Further, the function of Rab 

 

Figure 1 Biosynthesis of O-glycans under normal conditions (a) and in cancer cells (b). O-glycan synthesis is initiated by linking of GalNAc 
to the protein at Ser or Thr residue by the GalNTs to generate Tn antigen, which can be further converted to sialyl-Tn antigen by 
ST6GalNAc. Alternatively, Tn antigen is modified by the Core 3 GlcNAcT to Core 3, which in turn can generate Core 4 by C2GnT2. The 
Core 1 O-glycan is generated by C1GalT1. ST3Gal1 and ST6GalNAc compete with C2GnT1 for the Core 1 substrate to generate sialyl-T 
antigens or poly-N-acetyllactosamine structures carrying sialyl-Lewisx, respectively. Also, Core 1 can be extended by the addition of 
GlcNAc by B3GNT3. This structure then galactosylated, sialylated, and fucosylated, forming sialyl-Lewisx. In cancer cells, of which 
Golgi is fragmented, the dominant O-glycosylation pathways are formation of the Tn, sialyl-Tn, T, sialyl-T, disialosyl Core 1 antigens, 
and Core 1 or Core 3 extension with terminal sialyl-Lewisx. Note that Golgi fragmentation is accompanied by dedimerization of giantin 
(bottom) but did not affect integrity of GM130-GRASP65.  
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proteins is closely associated with pathways mediated by kinases; 
Rab25 overexpression, for example, has been suggested to be a 
marker of ovarian [68] and breast cancer [69]. Notably, Rab25 
was found abundantly expressed in the dispersed Golgi [70], 
and its overexpression increases signaling through the PI3K/Akt 
pathway and decreases expression of the proapoptotic BCL2 
family members [71,72]. 

Recently the Bard’s group has found that depletion of at least 
53 signaling genes induces strong fragmentation of the Golgi 
[73]. Among them are a wide range of kinases whose aberrant 
expression has been found in different types of cancer. For 
instance, down-regulation of inositol-trisphosphate 3-kinase 
A (ITPKA) was described in oral squamous cell carcinoma [74], 
ketohexokinase (KHK) in renal cell carcinoma [75], protein kinase 
D (PKD) in prostate, breast, gastric, and colon cancer [76]. The 
different isoforms of protein kinase C, including α, β, δ, and η 
is reduced in a large number of tumors, and its decrease often 
correlates with tumor grade [77]. However, the down-regulation 
of kinases during cancer development is only one side of the coin. 
Indeed, several pieces of evidence strongly indicate that many 
other kinases are upregulated; below are only a few examples. 

The elevated expression of diacylglycerol kinase, zeta, and DGKζ, 
contributes to increased Rho GTPase activation and the enhanced 
motility of metastatic colorectal cancer cells [78]. Another of the 
Golgi-specific kinases, MAP kinase ERK8 [73,79] and the P21-
activated protein kinase (Pak1) [80] are elevated in tumor cells 
and positively regulate cell migration. The overexpression of Src 
kinases results in fragmentation of Golgi in pancreatic cancer cells 
[81] and secretion of angiogenic growth factors [82]. Further, the 
members of serine/threonine protein kinases (Ste20), YSK1 and 
MST4 target Golgi via the golgin GM130, and their depletion alters 
Golgi structure and inhibits cell migration [83]. PKCε is increased 
in brain, bladder, and breast cancers [77], and it is detected in the 
Golgi upon its activation [84]. Notably, hyperactivity of kinases 
in cancer is accompanied by down-regulation of phosphatases, 
which enzymatic action is directly opposite to that of kinases. 
The level of dual specificity phosphatase 6 (DUSP6) is reduced in 
lung cancer [85], and expression of dual-specificity phosphatase 
2 (DUSP2) is low in breast, colon, lung, ovary, kidney, prostate, 
liver, and thyroid cancer [86]. It is important to note here that 
knockdown of both DUSP2 and DUSP6 significantly alters Golgi 
morphology [73]. 

Thus, the kinases play a dual role during tumor progression. 
Perhaps the key to understanding the nature of the Janus face 
of kinases lies in their different response to the Golgi structure. 
During malignant transformation and tumor progression, the 
anti-apoptotic kinases are upregulated, thus facilitating survival 
and proliferation [76]. Their appearance in the Golgi practically 
coincides with Golgi disorganization, which in turn hinders 
Golgi targeting of proapoptotic kinases and thereby inducing 
their degradation. In normal cells with unaffected Golgi, these 
kinases negatively regulate proliferation and activate apoptosis. 
Therefore, the inviolability of the Golgi is an important 
determinant for domination of proapoptotic kinases over their 
anti-apoptotic counterparts and consequently for the outcome of 
either programmed death or survival. 

Myosin Proteins and Golgi Fission 
The dynamic of Golgi membranes is triggered, among other 
cytoskeleton proteins, by the actin cytoskeleton and by 
associated unconventional myosins [87]. In many cases, the 
upregulation of Golgi-associated myosin motors is associated 
with aggressive cancer. For instance, overexpression of Myosin 
1b was described in head and neck squamous cell carcinoma 
[88], Myosin Va in colorectal cancer [89], and Myosin VI in 
prostate cancer [90]. The Myosin 18a directly interacts with Golgi 
phosphoprotein 3 (GOLPH3) and their link triggers Golgi dispersal 
[91]. Given that overexpressed GOLPH3 promotes proliferation 
and tumorigenicity [92-94], it is becoming understandable 
that Myosin 18 directly coordinates with Golgi morphology. It 
is also intriguing that GOLPH3-Myosin 18a partnership is also 
necessary for Golgi fragmentation induced by DNA damage, itself 
a prerequisite for most mutations and cancer [95]. 

During the past decade, increasing attention has been given 
to non-muscle Myosin IIA (NMIIA). The dynamic association of 
NMIIA with Golgi is coordinated by Rab6a, and in tandem they 
control retrograde transport from Golgi to ER [96]. Recent studies 
have shed light on the precise mechanism of NMIIA involvement 
in Golgi remodeling, demonstrating that NMIIA interacts with 
the cytoplasmic tail of Golgi glycosyltransferases, and this link 
provides not only the transportation of glycosyltransferases to 
the Golgi, but also creates a force for Golgi disorganization after: 
(a) heat shock or treatment with heat shock proteins inhibitors; 
(b) knockdown of beta-COP; and (c) treatment with Brefeldin 
A [13,97-99]. The ultimate role of NMIIA in cancer progression 
remains controversial. Some studies indicate that cessation of 
NMIIA results in a decrease in contractility and an increase in cell 
migration [100], and the level of NMIIA is diminished in human 
squamous cell carcinomas with poor survival [101]. Others 
show that the activity of NMIIA and its phosphorylation are 
positively correlated with the enhanced migration and invasion 
of tumor cells [102-104]. Our recent observations of the role of 
NMIIA in Golgi fragmentation also tempt us to speculate that 
NMIIA is a key driver of colon and prostate cancer progression. 
First, NMIIA is more stably associated with Golgi of androgen-
refractory prostate cancer cells than androgen-sensitive cells. 
Second, inhibition or siRNA knockdown of NMIIA restores 
compact Golgi morphology in prostate and colon cancer cells 
[13,34]. This process is mediated through Rab6a, which loses 
interaction with NMIIA, thereby facilitating giantin dimerization 
(Figure 2a). Finally, the Golgi renaissance in advanced prostate 
cancer is accompanied by Golgi re-targeting of C2GnT1, which, in 
turn, increases susceptibility to galectin-1-induced apoptosis by 
replacing sialyl-T antigen with polylactosamine [34] (Figure 2b).

The “Tug of War” in Golgi: The Choice 
between Death and Survival
Fragmentation of the Golgi is an essential event in all forms of 
apoptosis [105]. The Golgi localized caspase-2 and caspase-3 are 
generally accepted as the central players in the Golgi execution-
phase of apoptosis, because they mediate cleavage of several 
golgins and GRASPs, including golgin 160 [106], giantin [107], 
GM130 [108], and GRASP65 [109]. The simultaneous degradation 
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of these structural proteins results in the significant fission 
of Golgi. However, it is important to note that giantin is more 
stably associated with Golgi fragments than other golgins during 
apoptosis [110], confirming that giantin is the cornerstone of 
Golgi architecture. 

What is most astonishing is the high degree of fidelity with 
which Golgi transforms into two daughter parts during cell 
division. Under normal conditions, the Golgi G2 checkpoint gives 
the ‘‘green light’’ for entry into mitosis [111], but when DNA is 
damaged cells might be stopped at the G2, thus blocking the 
possible development of cancer [112]. At that point, cells should 

undergo apoptosis. This hara-kiri mechanism induced by chemical 
G2 checkpoint abrogators is one of the main strategies in the 
modern treatment of cancer [113]. Without this mechanism, 
the cells become malignant and permanently exhibit G2-specific 
fragmented Golgi [114]. The ability of tumor cells to override 
apoptosis is one of the hallmarks of cancer. Several anti-apoptotic 
mechanisms for the suppression of proapoptotic protein are 
employed by cancer cells for survival, including transcriptional, 
translational and post-translational regulation [115]. Whether these 
events are accompanied by dysregulation of caspases at the Golgi 
is uncertain, but it would seem likely, given that caspase-mediated 
degradation of golgins irreversibly results in apoptosis (Figure 3). 

Figure 2 The inhibition or knockdown of non-muscle Myosin IIA (NMIIA) results in restoration of compact Golgi in prostate cancer cells. (a) 
Giantin and NMIIA compete for Rab6a. In advanced prostate cancer, Rab6a and NMIIA associate to form fragmented Golgi phenotype. 
Cessation of NMIIA induces tight cooperation of Rab6a and giantin followed by dimerization of latter and formation of compact Golgi. 
(b) Confocal fluorescence photograph (64×; bars, 10 µm) of DU145 prostate cancer cells treated with Blebbistatin, an inhibitor of 
NMIIA, and stained for a Golgi marker giantin (green), polylactosamine stained with Lycopersicon esculentum agglutinin lectin (red), 
and nucleus with DAPI (blue).  Restoration of compact Golgi morphology is accompanied by Golgi targeting of a Core 2 enzyme, and 
subsequent increased production of polylactosamine and susceptibility to galectin-1-induced apoptosis (see the Ref. 34).
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Targeting the Golgi as a Potential Thera-
peutic Intervention
Disruption of the Golgi apparatus was a promising challenge in 
translational research because most of these agents induce cell 
death. For instance, swainsonine, an inhibitor of Golgi alpha-
mannosidase II, was considered as an anti-cancer drug with the 
potential for treating gastric carcinoma [116] and glioma [117]. 
However, a phase II clinical trial of GD0039 (a hydrochloride salt 
of swainsonine) in patients with renal carcinoma did not reveal 
any anti-tumor effect [118]. The other Golgi disruptive chemical, 
Brefeldin A, showed antiproliferative effects in vitro and inhibition 
of tumor growth in vivo [119,120], but the clinical implication 
has not progressed because of its poor solubility in water and 
its neurotoxicity. Moreover, as has been shown by BFA ester 
conjugates, the disruption of the Golgi complex is not necessary 
for cytotoxicity [121], indicating that the anti-tumor activity 
of BFA cannot be simply ascribed to its ability to induce Golgi 
collapse. The same Golgi disorganization approach was adopted 
in the series of preclinical studies which showed that silencing 
GM130 decreased angiogenesis and cells invasion in vitro and in 
lung cancer mice models [122]. In sum, the implication of Golgi 
disruptive agents looks like a dead-end, given that this strategy, 
in spite of its potential ability to launch apoptosis, may also 
accentuate Golgi fragmentation and increase the metastatic 
potential of cancer cells. 

Over the last two decades, targeting Ras GTPAses was an 
attractive clinical task: at first glance, it seemed so simple to 
search for drugs that could interfere with GTP binding to stop 
mutant Ras, and in preclinical models the agents that block Ras 
activation through inhibition of the enzyme farnesyl transferase 
resulted in cell growth arrest [123]. However, in clinical studies 
their activity was far less promising than anticipated. Newer and 
more promising results came from Shokat’s lab, which found a 
small molecule that irreversibly binds to a common oncogenic 
mutant, K-Ras(G12C), but does not affect the wild-type Ras 
[124]. However, these compounds have also not yet passed 
clinical tests [125]. To date, the few encouraging results we 
have may give us hope to develop new Rab-specific anticancer 
therapies. A biphosphonate derivative, 3-PEHPC [3-(3-pyridyl)-2-
hydroxy-2-phosphonopropanoic acid], inhibits posttranslational 
modification of Rabs, thereby inducing apoptosis of human 
myeloma cells in vitro [126] and reducing skeletal tumor growth 
in vivo [127]. It will be interesting to see what potential merits 
these findings deliver. 

The inhibitors of NMIIA may also yield novel cancer therapies. In 
preclinical models, Blebbistatin have shown excellent effects on 
Golgi restoration [34] and the blocking of invasiveness of both 

MCF-7 breast cancer [102] and pancreatic adenocarcinoma cells 
[128]. Another important consideration are the inhibitors of 
S100A4, a member of the S100 family of Ca2+-binding proteins, 
which regulates carcinoma cell motility via interactions with 
NMIIA [129]. Also, great attention was paid to the possible 
treatment of cancer by the inhibitors of kinases. To date, several 
kinase inhibitors have received US Food and Drug Administration 
approval, but their implication is limited by mutation actions 
of kinases that abrogate drug binding and by their high toxicity 
[130]. 

Taken together, we believe that it is more important from a 
clinical perspective to target fragmented Golgi at the G2 phase, 
before cancer cells have passed the cell circle. The chemical 
abrogation of the Golgi fragmentation and its possible restoration 
could bring short-term control of malignancy, in which the fatal 
pathways described in this article will be avoided and apoptosis 
will be induced. 

Concluding Remarks
Several important conclusions emerge from the phenomena 
described in this Review article. First, Golgi fragmentation 
results in the substantial rearrangement of Golgi residential 
glycosyltransferases, leading to the formation of cancer specific 
glycosyl epitopes. Second, Ras-proteins and myosin motor 
proteins are involved in the formation of disassembled Golgi 
phenotype. Third, the alteration of Golgi might ensure cancer cell 
survival by affecting the activity of proapoptotic kinases (Figure 3). 
It is also important to consider that downregulation of NMIIA is 
shown to restore compact Golgi and to increase susceptibility to 
galectin-1-induced apoptosis in prostate cancer cells; however, 
whether this phenomenon is universal and applicable to other 
types of cancer remains to be determined. Further studies are also 
needed to investigate the precise role of the GM130-GRASP65 
complex and other golgins in cancer-specific remodeling of Golgi.

 In sum, onco-Golgi seems the overriding condition for the survival 
of cancer cells. On the one hand, formation of fragmented Golgi 
phenotype is a cause of carcinogenesis, but on the other, it may 
be considered a consequence of cancer progression. Therefore, 
we anticipate confirmation of the existence of a vicious circle 
involving “Golgi fragmentation ↔ cancer progression.” The most 
important question is whether restoration of Golgi may block the 
crucial downstream pathways described in this article.
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Figure 3 Fragmentation of the Golgi is the hallmark of both apoptosis and cancer. The Golgi localized caspase-2 and caspase-3 mediate 
cleavage of several golgins and GRASPs, thus resulting in irreversible disorganization of the Golgi (left panel). Cancer-specific Golgi 
fragmentation (right panel) is accompanied by activation of different pathways, including (a) O-, and N-glycans sialylation, (b) 
overriding of Ras GTPases, (c) upregulation of anti-apoptotic protein kinases, and (d) myosin motor proteins association with Golgi.
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