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Description
Transcribing	 RNA	 polymerase	 II	 (Pol	 II)	 induces	 extensive	
chromatin	 remodeling	 facilitated	 by	 histone	 chaperones	 and	
elongation	factors	and	accompanied	by	limited	histone	exchange	
[1].	At	the	same	time,	histones	are	fully	evicted	only	from	highly	
transcribed	genes	[1];	thus	Pol	II	typically	encounters	nucleosomes	
during	transcription	of	every	~200	bp	DNA	regions.	Nucleosomes	
remaining	 on	 transcribed	 genes	 form	 two	 types	 of	 barriers	 for	
transcribing	Pol	II	[2,3].	In	yeast	and	Drosophila	each	nucleosome	
presents	a	barrier	where	Pol	 II	 is	paused	after	 transcribing	~15	
and	~50	bp	from	the	nucleosome	boundary	[2,3];	these	barriers	
are	also	universally	observed	in vitro [4].	A	much	higher	barrier	of	
the	second	type	is	formed	when	the	active	center	of	the	enzyme	
is	 positioned	 ~10	 bp	 upstream	 of	 the	 first	 (+1)	 transcribed	
nucleosome	in	Drosophila	[3].	However,	the	relative	contribution	
to	this	pause	 from	the	+1	nucleosome	and	negative	elongation	
factors	is	not	clear,	particularly	for	highly	expressed	genes	[3].

When	 Pol	 II	 encounters	 a	 barrier	 during	 transcript	 elongation,	
either	 DNA-bound	 proteins	 or	 DNA	 sequences	 that	 disfavour	
addition	of	 the	next	NTP,	 polymerase	backtracks	by	 sliding	 the	
transcription	 bubble	 and	 RNA-DNA	 hybrid	 upstream	 along	 the	
template.	This	displaces	the	RNA	3’	end	from	the	Pol	II	active	site,	
resulting	in	transcriptional	arrest.	Rapid	relief	of	arrest	requires	
protein	factor	TFIIS,	which	acts	along	with	the	Pol	II	active	center	
to	drive	cleavage	of	the	transcript.	This	restores	alignment	of	the	

3’	end	with	the	active	center	and	releases	the	downstream	RNA	
segment	 [5].	Arrest	 sites	 are	 rare	within	DNA	but	 backtracking	
and	 arrest	 are	 general	 properties	 of	 Pol	 II	 complexes	 halted	
just	downstream	(~+17	to	+32)	of	transcription	start	[6].	This	 is	
potentially	important	for	the	interaction	of	newly-initiated	Pol	II	
complexes	with	the	+1	nucleosome.

A	single	nucleosome	typically	forms	a	high,	asymmetrical	barrier	
of	the	first	type	for	Pol	II	transcription	in vitro	[4,7];	however,	the	
putative	 regulatory	 -10	 barrier	 of	 the	 second	 type	observed	 in 
vivo	has	not	been	recapitulated	in vitro.	The	strong	+15	and	+50	
nucleosomal	barriers	are	nucleosome-specific,	Pol	II-specific,	and	
were	described	for	all	analysed	organisms,	from	yeast	to	human	
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[4,8,9].	On	any	given	DNA	sequence	wrapped	onto	a	nucleosome,	
the	 barrier	 forms	 in	 distinct	 positions	 within	 the	 +(10-20)	 and	
+(40-50)	 regions	 [4].	 Thus,	 these	 nucleosomal	 barriers	 are	
“universal	signatures”	of	transcription	through	chromatin	by	Pol	
II	both	in vitro	and	in vivo	[2-4].

Both	 DNA-histone	 interactions	 and	 Pol	 II	 pausing	 and	
backtracking	contribute	to	formation	of	the	barrier.	Mapping	of	
intranucleosomal	DNA-histone	interactions	in	single	nucleosomes	
[10,11]	 identified	 two	 regions	 of	 strong	 interactions	 [+(25-35)	
and	 +(70-80)]	 that	 significantly	 affect	 the	 rate	 and	 efficiency	
of	 Pol	 II	 progression	 through	 a	 nucleosome,	 contributing	 to	
formation	of	the	+15	and	+50	nucleosomal	barriers,	respectively	
[4].	 An	 additional	 DNA	 region	 +(89-102),	 the	 polar	 barrier	
sequence,	determines	overall	affinity	of	DNA-histone	interactions	
in	a	sequence-specific	way,	contributes	 to	 the	+50	pausing	and	
dictates	overall	height	of	the	nucleosomal	barrier	to	transcription	
[12,13].	The	height	of	the	barrier	can	also	be	strongly	affected	by	
a	single	nick	in	nucleosomal	DNA	[14].

The	nucleosomal	barrier	 is	 largely	relieved	after	Pol	 II	advances	
beyond	 position	 +49.	 Initially	 a	 small,	 Pol	 II-containing	
intranucleosomal	DNA	loop	(Ø-loop)	forms	on	the	surface	of	the	
histone	octamer	at	position	+49	[12,15].	The	Ø-loop	is	stabilized	
by	Pol	II-histone	interactions	that	transiently	and	locally	replace	
DNA-histone	 interactions	 [16];	 the	 high	 efficiency	 of	 Ø-loop	
formation	 is	 characteristic	 for	 the	 Pol	 II-specific	mechanism	 of	

transcription	 through	 chromatin	 [17].	 Formation	 of	 the	Ø-loop	
induces	 uncoiling	 of	 the	 ~100-bp	 DNA	 region	 in	 front	 of	 the	
enzyme	allowing	 further	 transcription	 through	 the	nucleosome	
and	efficient	survival	of	nearly	all	histones	(with	exception	of	one	
H2A/H2B	 dimer	 that	 is	 displaced	 by	 Pol	 II)	 during	 this	 process	
[12,15].	The	high	efficiency	of	histone	survival	during	transcription	
is	explained	 in	part	by	allosterically	 stabilized	 intranucleosomal	
histone-histone	 interactions	 [18].	 Recent	 structural	 analysis	
indicates	that	after	Pol	II	encounters	the	strong	+50	barrier,	the	
enzyme	backtracks	and	nucleosomal	DNA	re-coils	on	the	octamer,	
locking	Pol	II	in	the	arrested	state	(Figure 1)	[18].

Two	general	mechanisms	should	facilitate	nucleosome	traversal:	
holding	 Pol	 II	 in	 its	 active	 state,	 including	 facilitating	 recovery	
from	 arrest,	 and	 disrupting	 critical	 histone-DNA	 interactions.	
As	noted,	TFIIS	mediates	 transcript	cleavage	to	restart	arrested	
polymerases	 and	 facilitates	 transcription	 through	 chromatin	
in vitro	 [8,19,20]	 (Figure 1).	 In	metazoans,	 TFIIF	maintains	 Pol	
II’s	 catalytic	 readiness	 and	 thus	 substantially	 increases	 overall	
elongation	 rates.	 Both	 TFIIF	 and	 TFIIS	 are	 associated	 with	 the	
body	 of	 active	 genes	 [21].	 In vitro	 studies	 showed	 that	 these	
two	 factors	 together	 modestly	 facilitate	 elongation	 through	 a	
single	 nucleosome.	 However,	 with	 a	 nucleosome	 containing	
a	 Sin	 mutant	 histone,	 which	 weakens	 the	 critical	 octamer-
DNA	 interactions	near	 the	nucleosome	dyad,	 elongation	 in	 the	
presence	 of	 TFIIF	 and	 TFIIS	 nearly	matched	 the	 efficiency	 and	
rate	 of	 elongation	 on	 histone-free	 DNA	 [22,23].	 These	 in vitro 

 
Figure 1 Structures of intermediates and the minimal kinetic scheme of Pol II transcription 
through the nucleosomal barrier. As Pol II enters a nucleosome (intermediate 1), it pauses and 
can backtrack along DNA (1.1). Backtracked state is strongly stabilized by recoiling of DNA on the 
open histone octamer surface (1.2). Bulk of Pol II collides with nucleosomal DNA, forming a very 
tight complex that strongly inhibits recovery of Pol II from the backtracked state. Pol II can 
recover from arrest with help of TFIIS that facilitates Pol II-induced RNA cleavage, providing Pol II 
with another chance to proceed further in the nucleosome, accompanied by uncoiling of nucleo-
somal DNA and facilitated by transient, stepwise binding of histone chaperone FACT to H2A/H2B 
dimers (2). Insert: A model of yeast RNA polymerase II elongation complex (PDB 1Y1W) with the 
active center at the position +42 bp in the nucleosome (PDB 1KX5). The model was built using the 
published structure of the +42 complex with E. coli RNA polymerase [18] where the bacterial 
enzyme was replaced by Pol II. Dotted line indicates direction of transcription by Pol II.
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Figure 1 Structures	of	intermediates	and	the	minimal	kinetic	scheme	of	Pol	II	transcription	through	the	nucleosomal	barrier.	As	Pol	II	enters	a	
nucleosome	(intermediate	1),	it	pauses	and	can	backtrack	along	DNA	(1.1).	Backtracked	state	is	strongly	stabilized	by	recoiling	of	DNA	
on	the	open	histone	octamer	surface	(1.2).	Bulk	of	Pol	II	collides	with	nucleosomal	DNA,	forming	a	very	tight	complex	that	strongly	
inhibits	recovery	of	Pol	II	from	the	backtracked	state.	Pol	II	can	recover	from	arrest	with	help	of	TFIIS	that	facilitates	Pol	II-induced	
RNA	cleavage,	providing	Pol	II	with	another	chance	to	proceed	further	in	the	nucleosome,	accompanied	by	uncoiling	of	nucleosomal	
DNA	and	facilitated	by	transient,	stepwise	binding	of	histone	chaperone	FACT	to	H2A/H2B	dimers	(2).	Insert:	A	model	of	yeast	RNA	
polymerase	II	elongation	complex	(PDB	1Y1W)	with	the	active	center	at	the	position	+42	bp	in	the	nucleosome	(PDB	1KX5).	The	
model	was	built	using	the	published	structure	of	the	+42	complex	with	E. coli	RNA	polymerase	[18]	where	the	bacterial	enzyme	was	
replaced	by	Pol	II.	Dotted	line	indicates	direction	of	transcription	by	Pol	II.
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studies	 with	 a	 minimal	 transcription	 machinery	 demonstrate	
that	efficient	and	rapid	nucleosome	traversal	 is	clearly	possible	
when	Pol	II	is	optimized	and	DNA	unwrapping	from	the	octamer	is	
facilitated	[24].	Histone	chaperone	FACT	is	an	example	of	a	factor	
that	facilitates	DNA	unwrapping	from	H2A/H2B	dimers	to	relieve	
the	 nucleosomal	 barrier	 and	 facilitate	 nucleosome	 traversal	 by	
Pol	II	[25,26]	(Figure 1).	Histone	acetylation	[27]	and/or	multiple	
molecules	 of	 Pol	 II	 [28,29]	 also	 help	 to	 overcome	 the	 barrier,	
affecting	different	steps	during	transcription	through	chromatin	
in vitro.	While	wrapping	of	DNA	on	the	central	core	of	the	histone	
octamer	provides	the	primary	block	to	transcript	elongation,	 in 
vitro	 studies	using	histones	 lacking	the	N-terminal	tails	showed	
that	the	tails	also	contribute	to	the	nucleosomal	barrier	[27,30].

Future	 studies	 in	 this	 area	 should	 address	 more	 fully	 the	
mechanisms	 through	 which	 Pol	 II	 overcomes	 the	 two	 classes	
of	 nucleosome-induced	 pauses	 described	 above.	 It	 has	 been	
suggested	 that	 the	 nearly	 universal	 pause	 by	 metazoan	 Pol	 II	
at	~50	nt	downstream	of	transcription	start	 is	directly	 linked	to	
the	barrier	 imposed	by	 the	+1	nucleosome	 [3],	 consistent	with	
the	 general	 tendency	 of	 Pol	 II	 to	 backtrack	 early	 in	 elongation	
[6].	 While	 pausing	 ~10	 bp	 upstream	 of	 a	 promoter-proximal	

nucleosome	has	not	be	observed	in vitro,	earlier	studies	did	not	
incorporate	 known	 negative	 elongation	 factors,	 including	 NELF	
and	DSIF	(reviewed	in	[31]).	Once	Pol	II	has	overcome	promoter-
proximal	 pausing,	 the	 polymerase	 will	 encounter	 barriers	 at	
~15	and	50	bp	within	each	downstream	nucleosome	 [3].	Entry	
into	 productive	 elongation	 in vivo	 requires	 at	 least	 the	 activity	
of	 P-TEFb,	 but	 the	 full	 set	 of	 factors	 essential	 for	 pause	 relief	
and	rapid	long-range	transcription	has	not	been	identified	[31].	
While	proof	of	principle	 experiments	with	TFIIF	 and	TFIIS	have	
shown	that	the	nucleosome	is	not	an	insurmountable	barrier	to	
elongation	by	Pol	II	[22],	a	major	long	term	challenge	will	be	to	
evaluate	the	roles	of	the	much	larger	set	of	elongation-associate	
factors	[31]	in	studies	which	require	Pol	II	to	rapidly	and	effectively	
traverse	long	arrays	of	nucleosomes	in vitro.
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